偏导数的连续性一般需要如何证明 判断二元函数的连续性与偏导数的存在性?

[更新]
·
·
分类:行业
1868 阅读

偏导数的连续性一般需要如何证明

判断二元函数的连续性与偏导数的存在性?

判断二元函数的连续性与偏导数的存在性?

二元函数连续、偏导数存在、可微之间的关系。
1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,
反过来则不一定成立。
2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,
反过来则不一定成立。
3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。
4、可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。
上面的4个结论在多元函数中也成立

函数不可微,偏导数一定不连续吗?

函数不可微可以推出偏导数不连续,因为当偏导连续时,可推出函数可微,逆否命题就是函数不可微则偏导不连续。 在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。
一般来说,若X是函数定义域上的一点,且′(X)有定义,则称在X点可微。
这就是说的图像在(X, (X))点有非垂直切线,且该点不是间断点、尖点。

偏导数连续如何证明例题?

先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)c,即偏导数连续,否则不连续。
1、偏导数的求法:
当函数 zf(x,y) 在 (x0,y0)的两个偏导数 fx(x0,y0) 与 fy(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

偏导数连续如何证明?

偏导数连续证明方法:先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)c,即偏导数连续,否则不连续。
  偏导数存在、函数可微、函数连续的#39关系是什么:
  在一元的情况下,可导可微-gt连续,可导一定连续,反之不一定。二元就不满足了在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函数不一定连续。函数可微,偏导数存在,函数连续;函数不可微,偏导数不一定存在,函数不一定连续。函数连续,偏导数不一定存在,函数不一定可微;函数不连续,偏导数不一定存在,函数不可微。
  偏导数存在并且偏导数连续gt可微gt函数连续(这里的连续是指没求导的函数)。
  偏导数存在并且偏导数连续gt可微gt偏导数存在。
  以上所有关系倒推均不成立。