几何重数与代数重数之间的关系 代数基本公理?

[更新]
·
·
分类:行业
1780 阅读

几何重数与代数重数之间的关系

代数基本公理?

代数基本公理?

代数学基本定理说明,任何复系数一元n次多项式方程在复数域上至少有一根。
由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。
有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。
这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。

为什么矩阵的几何重数小于等于代数重数?

恒有此关系: 几何重数 ≤ 代数重数几何重数:在矩阵运算中,该矩阵有特征值是重根,则该特征值所对应的特征向量所构成空间的维数,称为几何重数。(举例:一条直线与一个圆相切,那么切点的几何重数就是二,如果三条直线相交在一点,那么交点的几何重数就是三)代数重数:指方程的根的重数,也就是说,方程的根是几重根。(举例:(x-2)^30,这个方程的根为x2,这个根是3重的,因此x2的代数重数为3)
觉得有用点个赞吧

代数基本定理重要性?

任何复系数一元n次多项式 方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。代数基本定理在代数乃至整个数学中起着基础作用。 据说,关于代数学基本定理的证明,现有200多种证法。

二重特征值与秩的关系?

如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。
为讨论方便,设A为m阶方阵。
证明:设方阵A的秩为n。
因为任何矩阵都可以通过一系列初等变换,变成形如:
1 0 … 0 … 0
0 1 … 0 … 0
…………………
0 0 … 1 … 0
0 0 … 0 … 0
…………………
0 0 … 0 … 0
扩展资料
若a是矩阵A的特征值,则其(代数)重数等于n-r((aE-A)^n),几何重数(即特征子空间维数)等于n-r(aE-A)。
注1:r((aE-A)^n)表示aE-A的n次幂的秩;
注2:该结论可利用A的Jordan标准型得到。
矩阵A的相似对角矩阵的主对角元都是矩阵A的特征值,又因为矩阵A的秩与它的相似对角阵的秩相等,因此,如果矩阵A的秩为n,那么它就有n个非零特征值。